
α , β -EPOXYKETONE CHEMISTRY, II:

REACTION OF HC1 AND HBr WITH STEROIDAL 48.58-EPOXY-3-ONES1

M. Neeman and J.S. O'Grodnick²

Roswell Park Memorial Institute, Buffalo, New York 14203 (Received in USA 10 January 1972; received in UK for publication 27 January 1972)

In Part I the reactions of HF with steroidal α,β -epoxyketones were shown to occur regiospecifically by two alternative modes, β or α' , depending upon the solvent employed.³ In neat $CHCl_3$, two model compounds 4β , 5β epoxy-17 β -hydroxy-androstan-3-one 1b and 4α , 5α -epoxy-17 β -hydroxy-androstan-3-one 5 showed \$-mode regiospecificity leading to the corresponding cis- β, α -fluorohydrins. In contrast, α' -regiospecificity obtained in the reaction of the A/B <u>cis</u>-epoxyketone (1b) with HF in CHCl₃/EtOH, leading to the α' fluoro- α,β -en-one (4b).

la R=H 16 R = CH,

2b R=H, X= Br

4a x= ci 4b x= F

3a R= CH₃, X = Cl **ЗЬ** R= H , X= Br

The present communication is concerned with mechanistic variables, such as ionic radii of halides, steric factors, and solvent effects, in relation to regiospecificity. To study α and α' -regiospecificities, the A/B <u>cis</u>-epoxyketones (1 α) and (1b) were used as model compounds. In reactions with these compounds, nucleophiles having sizable steric requirements could encounter hindrance in approaching the C-5 oxirane carbon from the α -side of the molecule, an effect which would decrease the likelihood of β -mode oxirane opening by Br⁻ and Cl⁻, in contrast to P⁻, which reacts by β -mode in CHCl₃.⁴

Our previous finding had indicated lack of a-mode oxirane opening of F.3 This conclusion was confirmed in the present study by subjecting A/B cisepoxyketone (1a) to 30% aqueous HF in acetone (21°, 3 hrs), when no reaction occured. In contrast, a-mode regiospecificity was effected by reaction of epoxyketone (1g) in acetone solution with either 37% aqueous HCl (0° , 15 min) or 30% aqueous HBr (20⁰, 15 min) which afforded trans-diaxial α,β -halohydrins: 4α -chloro-5^{β}, 17^{β}-dihydroxy-estran-3-one 2 α , ⁵ mp 198-200[°]; IR (KBr): 3480 and 3270 cm⁻¹ (OH), 1735 cm⁻¹ (C=O); NMR (DMSO): 4.10 δ (1H, s, 4-H), 0.67 δ (3H, s, 18-CH₃); ORD (MeOH): $(\bullet)_{700} = + 127^{\circ}, (\bullet)_{589} = + 127^{\circ}, (\bullet)_{315} = + 3720^{\circ},$ $(\phi)_{294} = -3370^{\circ}; CD (MeOH): \Delta = +1.42; and 4\alpha-bromo-5\beta, 17\beta-dihydroxy$ estran-3-one 2b, mp 128-129°; IR (KBr): 3487 and 3270 cm⁻¹ (OH), 1714 cm⁻¹ (C=O); NMR (DMSO): 4.13 & (1H, s, 4-H), 0.68 & (3H, s, 18-CH₃); ORD (MeOH): $(\phi)_{700} = + 260^{\circ}, (\phi)_{589} = + 260^{\circ}, (\phi)_{332} = + 5600^{\circ}, (\phi)_{287} = - 8860^{\circ}, (\phi)_{278} = - 88$ - 9300°; CD (dioxane): $\Delta \epsilon_{308} = +$ 3.52, sh at 300 and 313 nm. The α, β -bromohydrin (2b) was converted to 4-bromo-17#-hydroxy-estr-4-en-3-one 3b⁶ in the same reaction medium (30% HBr in acetone) at higher temperature (57°, 1 hr). The α -mode reaction capabilities of Cl⁻ and Br⁻, as contrasted to the lack of such capability of F, reflect the greater polarizabilities of the larger X-; conceivably some degree of orbital overlap with carbonyl in the transition state is involved in a-mode oxirane opening.

The propensity of α -mode reactivity of Cl⁻ suggested that under conditions leading to α' -mode regiospecificity of F⁻, the corresponding reaction of Cl⁻ would not be α' -regiospecific. Indeed, when epoxyketone (1b) was subjected to reaction with HCl in CHCl₂/EtOH,⁷ two products were isolated

in a 1:1 ratio: product A, UV (EtOH): 256 (14,700) was identified as 4chlorotestosterone 3a,⁸ and product B, UV (EtOH): 243 (14,800); NMR (CDCl₃): 5.90 & (1H, s, 4-H), 4.70 & (1H, q, J₂₀ = 5.5 Hz, J₂₀ = 14 Hz, 2-H) was 2achlorotestosterone 4a,⁹ indicating a 1:1 ratio of $\alpha: \alpha'$ -mode oxirane opening. This a: a' ratio could be altered by changes in reaction conditions: when the solvent was THF.^{10a} the ratio $\alpha: \alpha'$ was 2:1; when the HC1/THF ratio was decreased, 10b a-mode regiospecificity was attained, with concomitant reduction in reaction rate. The reported product ratios of 3a:4a can be viewed as reflecting a: a'-mode ratios, assuming no chloride migration in conversion of primary to final reaction products. The following experiments support this assumption: (i) a 1:1 mixture of 3a:4a, when exposed to THF/HC1, 10a was recovered unchanged, indicating no $\alpha' \rightarrow \alpha$ migration of Cl; (11) when (3a) was exposed to HCl in CHCl₃/EtOH,⁷ it was recovered unchanged, indicating no $\alpha \rightarrow \alpha'$ migration; (iii) when (2a) was exposed to HCl in CHCl₃/EtOH,⁷ 4-chloro-17 #-hydroxy-estr-4-en-3-one 3c¹¹ was obtained, and no products containing a 2-chloro-substituent were formed, ruling out a 4a,58-chlorohydrin as an intermediate in α' -mode reaction leading from epoxyketone (1b) to 2α -chlorotestosterone 4a. These findings enlarge the scope of the α' -mode reaction of a, &-epoxyketones to encompass nucleophilic cine-chlorination in addition to cine-fluorination.

References

- 1. This study was supported by the American Cancer Society Research Grant P-265G to the senior author, and the American Cancer Society Institutional Research Grant IN 54 J-21; National Science Foundation Grant GB-6238 for the purchase of the A-60-A NMR spectrometer; and by the NIH General Research Service Grant FR-05648 to Roswell Park Memorial Institute.
- Supported by a NIH Trainceship from NIH-PHS Institutional Training Grant CA-5016-14, 1969-1970, and by a New York State Fellowship, 1970-1971. Abstracted, in part, from the doctoral dissertation of J.S. O'Grodnick, in partial fulfillment of requirements for the Ph.D. degree.

- 3. M. Neeman and J.S. O'Grodnick, Tetrahedron Letters, 4847 (1971).
- 4. The lack of evidence for the operation of steric approach control in the s-mode oxirane opening by HF in $CHCl_3$ (s-regiospecific reactions of both the A/B <u>trans</u>-epoxyketone 5 and the A/B <u>cis</u>-epoxyketone 1b) is interpreted as a reflection of the small steric requirement of F⁻ in $CHCl_3$.
- 5. All new compounds had satisfactory analytical data.
- 6. P.L. Julian and H.C. Printy, U.S. Pat. 2,933,510 (1960).
- 7. HCl was bubbled into CHCl₃ containing 10% EtOH for 7 min, and the steroid added in one portion. After 3 min at 23⁰ the reaction mixture was worked up.
- 8(a). B. Camerino, B. Patelli, A. Vercellone, and F. Meda, <u>Il Farmaco Ed. Sci.</u>, <u>11</u>, 586 (1956).
- (b). H.J. Ringold, E. Batres, O. Mancera, and G. Rosenkranz, J. Org. Chem., <u>21</u>, 1432 (1956).
- 9. K. Yasuda, Chem. Pharm. Bull. (Japan), 12, 1217 (1964).
- 10(a).Into THF at 0° was bubbled anhydrous HCl for 10 min, and the epoxyketone (1b) in THF at 0° was added in one portion.
 - (b).Dilution of reaction mixture (a) with THF prior to addition of epoxy-ketone (1b), in a 1:10 ratio, gave 4-chlorotestosterone 3a in 30% yield, with recovery of epoxyketone (1b) in 70% yield. Higher dilution (1:100 and 1:1000) precluded reaction.
- 11. Y. Nomura, B. Takegawa, and I. Chumu, Japan. Pat. 8232 (1960).